

Cavity Dumper Kit

The Cavity Dumper Kit is an acousto-optical switch that can be integrated into the cavity of a mode-locked laser system for the reduction of the system's pulse repetition rate. Unlike pulse pickers the intracavity operation increases the pulse energy to a multiple of the energy that is reached by the normal mode-locked pulses of the system. This makes it particularly relevant for non-linear optical processes like SHG and THG.

The Cavity Dumper Kit consists of an acousto-optical Bragg cell to be integrated into the laser cavity and the *pulse*Switch control electronics. As an option A·P·E offers a mounting kit for holding the Bragg cell, which provides all the necessary tools for adjusting the modulator.

The control electronics generate the RF carrier signal for the Bragg cell from a seed input signal with the repetition rate of the mode-locked system. An internal frequency divider allows for division rates between 1:20 and 1:5000 of the seed frequency (optional: 1:2 ... 1:260000). External triggering and therefore single pulse operation is possible as well. The phase of the RF signal is fine-tuned by a phase shifter as a requirement for using the cavity dumper in double pass operation.

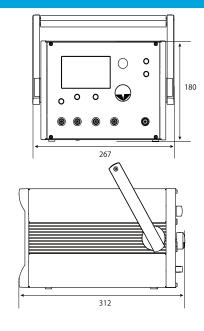
- Generation of powerful laser pulses
- Fast rise times
- Tunable phase shift
- Suitable for a variety of different Ti:Sapphire, ion- and dye lasers as well as other laser systems

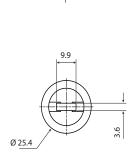
Pulse Selection

Specifications

Modulator Element	
Material	fused silica, Brewster configuration
Required beam diameter	approx. 50 μm
Wavelength range	340 > 1600 nm
Diffraction efficiency	> 50 % 1)

RF Driver	
Seed frequency (f _{seed}) 2)	70 85 MHz
Option	25 70 MHz 85 100 MHz (others on request)
	(to be specified with \pm 0.5 MHz accuracy at time of order)
Output repetition rate	single shot 3 MHz externally triggerer
	f _{seed} /20 f _{seed} /5000 with internal divider
	f/2 f/2600000 (optional)
Carrier frequency	synchronized to seed frequency
Electronic pulse rise time	2 ns
Electronic pulse timing jitter	< 50 ps
RF phase shift tuning range	> 180°


¹⁾ Single pass at 800 nm, 4 MHz (varying with wavelength and repetition rate)


Dimensions (in mm)

Control electronics: 267 x 180 x 312 (W x H x D)

Bragg cell: see below

4.6

Contact:

A·P·E Angewandte Physik & Elektronik GmbH
Plauener Str. 163-165 | Haus N | 13053 Berlin | Germany
T: +49 30 986 011-30 | E: sales@ape-berlin.de | www.ape-berlin.com
or
A·P·E America (for the Americas)
45401 Research Avenue | Suite 141 | Fremont, CA 94539 | USA

T: +1 (888) 690 3250 | E: sales@ape-america.com | www.ape-america.com

www.phototechnica.co.jp TECHNICA フォトテクニカ株式会社 〒336-0017 埼玉県さいたま市南区南浦和 1-2-17 TEL:048-871-0067 FAX:048-871-0068 e-mail:voc@phototechnica.co.jp

A·P·E follows a policy of continued product improvement. Therefore, specifications are subject to change without notice. © A·P·E GmbH | January 2015

²⁾ Synchronization signal with the laser repetition rate from a fast photodiode is required