Second Harmonic Generation FROG

Complete Pulse Characterization with pulseCheck and FROG Option

- Second Harmonic Generation FROG is the most popular spectrometer-less Frequency Resolved Optical Gating method. The pulseCheck autocorrelators by APE optionally integrate FROG, giving access to complete pulse characterization. The addition of a special nonlinear crystal module and dedicated software opens the door to complete spectral and temporal pulse characterization.

Crystal Module

FROG Setup:
1. Crystal Module within pulseCheck
2. Replacement Focus Mirror
3. FROG Software Upgrade

Different crystal modules for various wavelength ranges:

- VIS I: 420-550 nm
- VIS II: 550-700 nm
- NIR: 700-900 nm
- IR I: 900-1200 nm
- IR II: 1200-1600 nm
- Ext. IR I: 1800-2200 nm

- Complete pulse characterization with Second Harmonic Generation FROG
- Different crystal modules available to cover wavelengths from 420 - 2200 nm
- FROG trace data processing and visualization with included software
- Pulse width ranges from as low as 20 fs up to 6 ps
- High spectral resolution up to 0.1 nm
- Available for the pulseCheck autocorrelator series**

* See appendix for configuration details (page 34)
** Except for pulseCheck SM models; Required laser rep. rate >10 kHz
... FROG Pulse Characterization Software

FROG Trace

- The software provides the laser pulse intensity as a function of time and frequency (wavelength). This is visualized in form of the common FROG trace diagram.
- With the implemented phase matching routine from pulseCheck, it only is a matter of seconds to automatically find the required phase matching tuning angle.

Wavelength and Pulse Coverage

- The various crystals available guarantee coverage of wavelengths from 420 nm right up to 1600 nm, of pulse widths from 20 fs to 6 ps, and a spectral resolution starting as high as 0.1 nm.
- The FROG option is designed for laser repetition rates above 10 kHz and is available for the pulseCheck autocorrelator series (except for SM models).

Software interface FROG for pulseCheck
Appendix FROG Crystals

<table>
<thead>
<tr>
<th>FROG Crystal</th>
<th>Wavelength Range</th>
<th>Pulse Width Range</th>
<th>Spectral Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIS-I-200</td>
<td>420 ... 550 nm</td>
<td>200 ... 6000 fs</td>
<td>0.1 nm</td>
</tr>
<tr>
<td>VIS-I-50</td>
<td>420 ... 550 nm</td>
<td>50 ... 200 fs</td>
<td>0.3 nm</td>
</tr>
<tr>
<td>VIS-I-20</td>
<td>420 ... 550 nm</td>
<td>20 ... 70 fs</td>
<td>1 nm</td>
</tr>
<tr>
<td>VIS-II-150</td>
<td>550 ... 700 nm</td>
<td>150 ... 2000 fs</td>
<td>0.1 nm</td>
</tr>
<tr>
<td>VIS-II-50</td>
<td>550 ... 700 nm</td>
<td>50 ... 200 fs</td>
<td>0.3 nm</td>
</tr>
<tr>
<td>VIS-II-20</td>
<td>550 ... 700 nm</td>
<td>20 ... 60 fs</td>
<td>2 nm</td>
</tr>
<tr>
<td>NIR-200</td>
<td>700 ... 900 nm</td>
<td>200 ... 5000 fs</td>
<td>0.1 nm</td>
</tr>
<tr>
<td>NIR-50</td>
<td>700 ... 900 nm</td>
<td>50 ... 500 fs</td>
<td>0.2 nm</td>
</tr>
<tr>
<td>NIR-20</td>
<td>700 ... 900 nm</td>
<td>20 ... 50 fs</td>
<td>3 nm</td>
</tr>
<tr>
<td>IR-I-150</td>
<td>900 ... 1200 nm</td>
<td>150 ... 900 fs</td>
<td>0.2 nm</td>
</tr>
<tr>
<td>IR-I-60</td>
<td>900 ... 1200 nm</td>
<td>60 ... 200 fs</td>
<td>1 nm</td>
</tr>
<tr>
<td>IR-I-30</td>
<td>900 ... 1200 nm</td>
<td>30 ... 60 fs</td>
<td>5 nm</td>
</tr>
<tr>
<td>IR-II-100</td>
<td>1200 ... 1600 nm</td>
<td>100 ... 700 fs</td>
<td>0.5 nm</td>
</tr>
<tr>
<td>IR-II-50</td>
<td>1200 ... 1600 nm</td>
<td>50 ... 100 fs</td>
<td>2 nm</td>
</tr>
<tr>
<td>IR-II-30</td>
<td>1200 ... 1600 nm</td>
<td>30 ... 50 fs</td>
<td>9 nm</td>
</tr>
<tr>
<td>Ext. IR-I-50</td>
<td>1800 ... 2200 nm</td>
<td>50 ... 200 fs</td>
<td>19 nm</td>
</tr>
</tbody>
</table>
Appendix Technical Drawings

pulseCheck

- Multitalent for any task

Manual delay (15 / 50 ps version only)

Beam distance

Beam input

Focus alignment

Input mirror

Beam height

250

220

76

190

315 (for 15/50 ps version)

350 (for 150 ps version)

575 (for SM 2000 ps version)