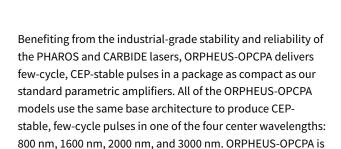

OPCPA

Optical Parametric Chirped-Pulse Amplification Systems

FEATURES OVERVIEW

- Shortest pulses, extreme peak and average powers
- 800 nm, 1600 nm, 2000 nm, and 3000 nm wavelengths
- TW-level peak power
- Down to 6 fs pulse duration
- Up to 1 MHz repetition rate
- < 250 mrad CEP stability

Optical parametric chirped-pulse amplification (OPCPA) is the only currently available laser technology simultaneously providing high peak and average power, as well as few-cycle pulse duration required by the most demanding scientific applications. Our answer to these demands is a portfolio of cutting-edge OPCPA products based on years of experience in developing and manufacturing optical parametric amplifiers and femtosecond lasers.



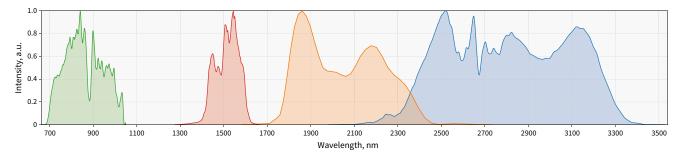
ORPHEUS | OPCPA

Compact, Few-cycle, CEP-stable OPCPA Systems

FEATURES

- < 6 fs transform-limited pulse duration
- Up to 1 MHz repetition rate
- Up to 320 W pump power
- Up to 8 mJ pump pulse energy
- CEP stabilization option
- Compact footprint

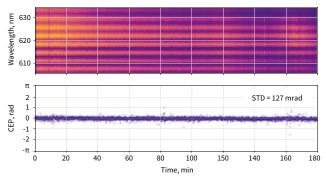
available in versions with pulse compressors for direct use in


applications or in versions intended as seed sources, delivering background-free pulses with near-single-cycle bandwidths, excellent spectral phase coherence, and CEP stability. By using bundled CARBIDE or PHAROS lasers, pump power of up to 320 W and pump pulse energy of up to 8 mJ is accessible. The use of other pump sources for higher power, such as thindisk or innoslab lasers, is available upon request.

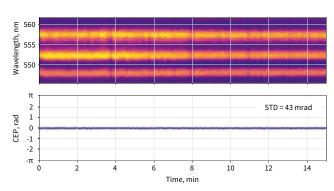
SPECIFICATIONS

Model				
Center wavelength	800 nm	1600 nm	2000 nm	3000 nm
Pump source 1)	PHAROS / CARBIDE			
Pump power 1)	20 – 320 W			
Pump pulse energy 1)	0.2 – 8 mJ			
Repetition rate	1 kHz – 1 MHz			
Conversion efficiency 2)	> 7%	> 10%	> 9%	> 6%
Pulse duration 2)	< 10 fs	< 40 fs	< 25 fs	< 45 fs
Transform-limited pulse duration 2) 3)	< 6 fs	< 30 fs	< 15 fs	< 35 fs
CEP stability, 1h ^{2) 4)}	< 250 mrad			
Long-term power stability, 8 h ^{2) 5)}	<1.5%			
Pulse-to-pulse energy stability, 1 min 2) 5)	< 1.5%			

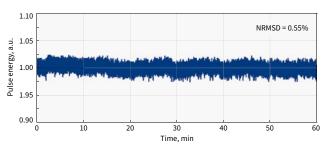
- 1) For using other pump sources, such as thin-disk or innoslab lasers, contact sales@lightcon.com.
- 2) Typical values. For custom inquiries, contact sales@lightcon.com.
- ³⁾ Uncompressed, for seeding larger amplifiers.
- CEP values calculated from unaveraged, single-shot measurements.
- 5) Expressed as normalized root mean squared deviation (NRMSD).



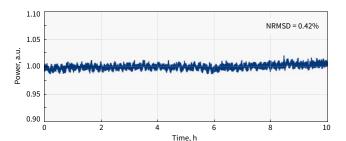
Example spectra of four models of ORPHEUS-OPCPA



STABILITY


CEP stability of ORPHEUS-OPCPA (800 nm, 100 kHz)

All CEP values calculated from unaveraged, single-shot measurements!



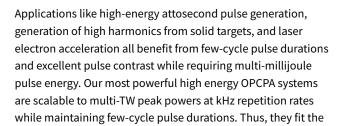
CEP stability of ORPHEUS-OPCPA (3 µm, 1 kHz)

All CEP values calculated from unaveraged, single-shot measurements!

Pulse-to-pulse energy stability of ORPHEUS-OPCPA at 800 nm

Long-term output stability of ORPHEUS-OPCPA at 800 nm

〒336-0017 埼玉県さいたま市南区南浦和 1-2-17 TEL:048-871-0067 FAX:048-871-0068 e-mail:voc@phototechnica.co.jp



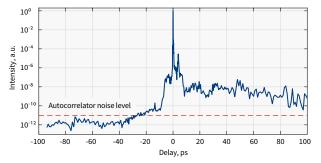
OPCPA | HE

High-Energy OPCPA Systems

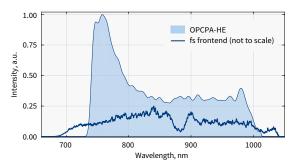
FEATURES

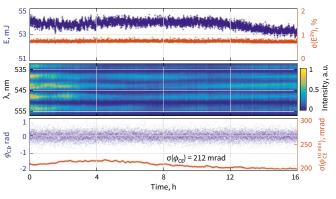
- Multi-TW peak-power pulses at up to 1 kHz
- > 10¹² pre-pulse contrast
- < 250 mrad CEP stability
- < 1.5% pulse energy stability
- < 9 fs pulse duration
- < 1-hour warm-up time
- Spectral-temporal output pulse shaping options

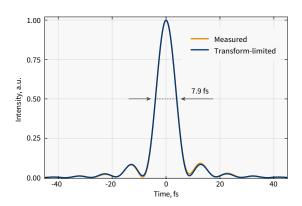
most demanding requirements while providing stability and reliability unprecedented for systems of this scale. Furthermore, > 1012 pre-pulse contrast is obtained without complex and lossy nonlinear pulse cleaning techniques, while < 250 mrad CEP stability and < 1.5% pulse energy stability are maintained throughout a full day of operation, making it a robust and reliable multi-TW system.


SPECIFICATIONS

Model	ОРСРА-НЕ				
Center wavelength	800 nm	1600 nm	2000 nm		
Pump source	Picosecond Nd:YAG lasers, seeded by ORPHEUS-OPCPA				
Repetition rate	10 Hz – 1 kHz				
Maximum output pulse energy 1)	120 mJ	100 mJ	50 mJ		
Pulse duration 1)	< 9 fs	< 50 fs	< 30 fs		
CEP stability, 1h 1) 2)	< 250 mrad				
Long-term power stability, 8 h 1) 3)	< 1.5%				
Pulse-to-pulse energy stability, 1 min 1)3)	< 1.5%				


- 1) Typical values. For custom inquiries, contact sales@lightcon.com.
- ²⁾ CEP values calculated from unaveraged, single-shot measurements.
- ³⁾ Expressed as as normalized root mean squared deviation (NRMSD).




High-dynamic-range third order autocorrelation measurement of an OPCPA-HE system

OPCPA-HE output spectrum

OPCPA-HE pulse energy, f-2f interferogram and CEP stability measured over 16 h

Temporal profile of OPCPA-HE output pulses measured with a self-referenced spectral interferometry device

〒336-0017 埼玉県さいたま市南区南浦和 1-2-17 TEL:048-871-0067 FAX:048-871-0068 e-mail:voc@phototechnica.co.jp

