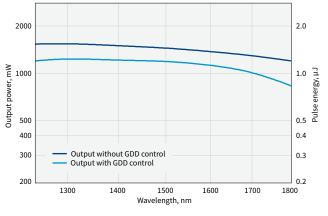
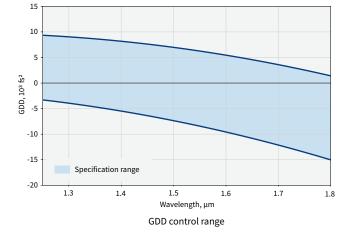
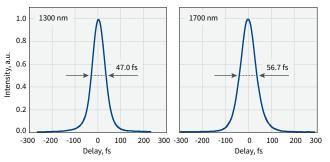
CRONUS | 3P

Laser Source for Advanced Nonlinear Microscopy


FEATURES

- · High pulse energy for deep imaging
- 1250 1800 nm tuning range for 3P imaging
- Down to 50 fs pulse duration for high peak power
- Automated wavelength and GDD control for optimal signal
- Market-leading pulse-to-pulse energy stability




CRONUS-3P is a turn-key laser source developed for advanced nonlinear microscopy. It provides µJ-level pulses down to 50 fs at repetition rates of up to 2 MHz and tunable in the short-wavelength infrared (SWIR) range from 1250 to 1800 nm, thus covering the biological transparency windows at 1300 and 1700 nm for three-photon (3P) microscopy. In addition, CRONUS-3P offers integrated group delay dispersion (GDD) control and beam steering, as well as an option for simultaneous 1030 nm output.

Typically, multiphoton imaging in the SWIR range requires a complex multi-device laser system, a large optical table, and skilled staff. This reality encumbers neuroscience and other biomedical applications. The CRONUS-3P system is a next-generation, industrial-grade, single-supplier solution that is more compact, more reliable, and more versatile. It achieves tunable femtosecond excitation with GDD compensation, ensuring optimal pulse duration at the sample, while industrial-grade design guarantees high pulse-to-pulse energy and long-term power stability.

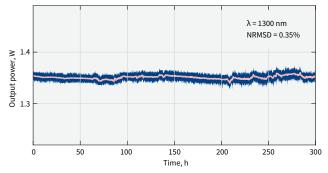
Output power and pulse energy vs wavelength, at 1 MHz

Typical pulse duration at 1300 nm and 1700 nm

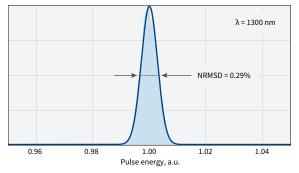
SPECIFICATIONS

Model	CRONUS-3P		CRONUS-3P with power control		
Tuning range 1)	1250 – 1800 nm				
Repetition rate ²⁾	Single-shot – 1 MHz or 2 MHz				
	1300 nm	1700 nm	1300 nm	1700 nm	
Pulse duration	< 50 fs	< 65 fs	< 50 fs	< 65 fs	
Output power	> 1100 mW @ 1 MHz > 800 mW @ 2 MHz	> 800 mW @ 1 MHz > 500 mW @ 2 MHz	> 1000 mW @ 1 MHz > 700 mW @ 2 MHz	> 700 mW @ 1 MHz > 400 mW @ 2 MHz	
GDD control range 3)	-4000 to +9000 fs ²	-12000 to +3500 fs ²	-4000 to +9000 fs ²	-12000 to +3500 fs ²	
Beam diameter 4)	2 – 4 mm				
Beam quality, M²	<1.2				
Beam ellipticity	8.0 <				
Beam divergence	< 1 mrad				
Beam pointing stability	< 100 μrad				
Long-term power stability, 24 h 5)	< 1%				
Pulse-to-pulse energy stability, 1 min 5)	< 1%				

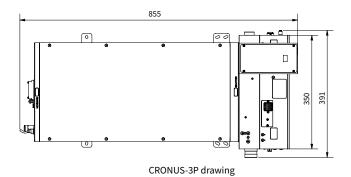
MAIN OUTPUT WITHOUT GDD CONTROL

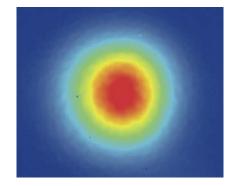

Output power ⁶⁾	> 1500 mW @ 1 MHz > 1000 mW @ 2 MHz	> 1050 mW @ 1 MHz > 700 mW @ 2 MHz	n/a
	2000 11111 @ 211112	10011111 @ 2 111112	

ADDITIONAL OUTPUTS


Auxiliary 1030 nm amplifier output	1030 ± 10 nm, up to 40 W, up to 2 MHz, < 250 fs
Optional 1030 nm oscillator output	1030 ± 10 nm, up to 500 mW, ≈ 65 MHz, ≈ 200 fs

- ¹⁾ 2P+3P configuration with extended tuning range to 650 920 nm is available, contact sales@lightcon.com.
- ²⁾ Lower repetition rate with higher pulse energy option available.
- $^{\rm 3)}$ Continuous dispersion control; –3000 fs² compensates a microscope with +3000 fs².
- ⁴⁾ 1/e², measured at compressor output.
- ⁵⁾ Expressed as NRMSD (normalized root mean squared deviation).
- ⁶⁾ Available only for v1. Contact sales@lightcon.com for more details.





Typical long-term power stability at 1300 nm

Typical pulse-to-pulse energy distribution at 1300 nm

Beam profile at 1300 nm